Writing Exponential Decay Rules

1.	A ball drops from 10 feet and rebounds to 25% of its rebound height. Write the "y =" equation that models the situation and the recursive rule that models the situation.
2.	A 10 mg dose of an antibiotic will be broken down so that after one hour only 60% will remain active. Write the "y =" equation that models the situation and the recursive rule that models the situation.
3.	A ball drops from 20 feet and rebounds to 40% of its rebound height. Write the " \mathbf{y} =" equation that models the situation and the recursive rule that models the situation.
4.	A 30 mg dose of an antibiotic will be broken down so that after one hour only 80% will remain active. Write the " y =" equation that models the situation and the recursive rule that models the situation.
5.	A ball drops from 100 feet and rebounds to 70% of its rebound height. Write the "y =" equation that models the situation and the recursive rule that models the situation.
6.	A 500 mg dose of an antibiotic will be broken down so that after one hour only 75% will remain active. Write the " y =" equation that models the situation and the recursive rule that models the situation.